Steven Boggs

Dean, Division of Physical Sciences
Professor of Physics
University of California, San Diego
CV (pdf)
Publications

 

 

 

 

 

 

 

Steve Boggs received his B.S. in Physics, summa cum laude, from the University of Illinois, Urbana/Champaign in 1991. He received his Ph.D. from Berkeley in 1998, where he held a NASA graduate student research fellowship. He was a Millikan Postdoctoral Fellow at the California Institute of Technology before returning to join the UC Berkeley Physics Department in July 2000. In 2017, he joined UC San Diego Physics and began his role as Dean of Physical Sciences.

Contact
5205 Natural Sciences Building
University of California, San Diego
La Jolla, CA 92093-0352

seboggs at ucsd dot edu

tel: (858) 534-6882
fax: (858) 534-5224

Research Interests 
Experimental high energy astrophysics is the study of some of nature’s most exotic creations, and their application to exploring fundamental physics. My research is focused on developing and flying new gamma-ray telescopes to probe these environments from space. My primary interest is the detailed measurement of radioactive nuclei produced in the inner regions of a supernova explosion. Through their conversion of gravitational energy to nuclear energy, supernovae are the dominant engines of evolution in the Universe – controlling the production of the elements making up the world around us, the internal structure of galaxies, and the acceleration of cosmic rays. The radioactive nuclei produced in these explosions emit gamma-rays of characteristic energies for each isotope. These photons serve as sensitive probes of the detailed nuclear physics in the extreme conditions at the heart of a supernova, conditions far from the laboratory environment. These nuclei also allow us to discover and study the active sites of nucleosynthesis in our Galaxy.

Gamma-ray astrophysics also touches many fields of fundamental physics, including the study of dark matter, quantum gravity, and cosmology, as well as studying matter in nature’s most exotic environments. We can’t see a black hole by definition, but high energy particles – accelerated by the deep gravitational well – emit gamma-rays before disappearing over the event horizon. These photons directly reflect the complex physics of particle interactions in highly-curved spacetime. Neutron stars are the ultimate balancing act between modern and classical physics, with the baryon degeneracy pressure precariously halting the collapse of the star to a black hole. The study of gamma-ray emission from the surface of these objects allows us to probe the nuclear equation of state in extremely general-relativistic conditions.

A key to these studies is the development of gamma-ray instruments with excellent sensitivity. Our group is actively involved in scientific observations with several current telescopes, as well as the development of novel gamma-ray telescopes for satellite and balloon missions.